19,527 research outputs found

    Effects of Length and Diameter of Open-Ended Coaxial Sensor on its Reflection Coefficient

    Get PDF
    This paper presents a calibration technique for a coaxial sensor using a transmission signal approach. The sensor was fabricated from commercially available RG402/U and RG405/U semi-rigid coaxial cable. The length of the coaxial sensor was correlated with the attenuation and standing wave inside the coaxial line. The functions of multiple reflection amplitude and tolerance length with respect to the actual length of coaxial line were empirically formulated using regression analysis. The tolerances and the undesired standing wave which occurs along the coaxial line were analyzed in detai

    Profiles of thermal line emission from advection dominated accretion flows

    Full text link
    Recently, Narayan & Raymond (1999) proposed that the thermal emission lines from the hot plasma in advection dominated accretion flows (ADAFs) are potentially observable with the next generation of X-ray observatories, with which the physical properties of some X-ray sources can be probed. In ADAFs, the temperature of the ion is so high that the thermal broadening of the line is important. We calculate the profiles of thermal line emission from ADAFs, in which both the thermal and Doppler broadening have been considered. It is found that the double-peaked profiles are present for high inclination angles between the axis of disk and the line of sight. The double-peaked profiles are smeared in low inclination cases, and completely disappear while the inclination angle is less than 1515^{\circ}, where the thermal and turbulent broadening dominated on the line profiles. We also note that the thermal line profile is affected by the location of the transition radius of ADAF. The self-similar height-integrated disk structure and the emissivity with power-law dependence of radius are adopted in our calculations. The results obtained in this work can be used as a diagnosis on the future X-ray observations of the thermal lines. Some important physical quantities of ADAFs could be inferred from future thermal line observations.Comment: 7 page

    Optical isolation with nonlinear topological photonics

    Full text link
    It is shown that the concept of topological phase transitions can be used to design nonlinear photonic structures exhibiting power thresholds and discontinuities in their transmittance. This provides a novel route to devising nonlinear optical isolators. We study three representative designs: (i) a waveguide array implementing a nonlinear 1D Su-Schrieffer-Heeger (SSH) model, (ii) a waveguide array implementing a nonlinear 2D Haldane model, and (iii) a 2D lattice of coupled-ring waveguides. In the first two cases, we find a correspondence between the topological transition of the underlying linear lattice and the power threshold of the transmittance, and show that the transmission behavior is attributable to the emergence of a self-induced topological soliton. In the third case, we show that the topological transition produces a discontinuity in the transmittance curve, which can be exploited to achieve sharp jumps in the power-dependent isolation ratio.Comment: 11 pages, 7 figure

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations
    corecore